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3.1. Definition. Spanning Tree

A subgraph T of a connected graph G is called a spanning
tree if it is a tree containing all the vertices of G.In the figure : 1 a
spanning tree is indicated by thick edges.

Figure 1. A spanning tree indicated by thick edges

3.2. Definition. Branch

Branch :
An edge in a spanning tree T is called a branch of the spanning
tree T . In the figure 1 the edges b1, b2, . . . , b7 are branches of the tree
indicated by thick edges.

3.3. Definition. Chord

Chord :
If an edge of a connected graph G is not a branch of a spanning tree
T then the edge is called a chord of the spanning tree T . In the
figure 1 the edges c1, c2, c3, c4 and c7 are chords of the tree indicated
by thick edges.

3.4. Definition. Forest

A collection of trees in a graph G is called a forest in the
graph.

3.5. Definition. Spanning Forest

A forest that contains every vertex of a graph G such that two
vertices are in the same tree of the forest when there is a path in G
between these two vertices. In other words, a spanning forest of a
graph G is a collection of exactly one spanning tree from each of its
connected components.

3.6. Definition. Rank

Rank
If in a graph G there are total n vertices and k compo-
nents then the rank, generally denoted by r, is defined as

r = n− k

3.7. Definition. Nullity
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Nullity
If in a graph G there are total n vertices, k components and e
edges then the nullity of G, generally denoted by µ, is defined as

µ = e− n+ k

3.8. Definition. Fundamental Circuit

Fundamental Circuit
Let T be a spanning tree in a connected graph G. When a chord is
added to a spanning tree T then it forms exactly one circuit. Such a
circuit is called a fundamental circuit.

3.9. THEOREM. Prove that every connected graph has at least
one spanning tree.

Proof : If a connected graph G has no circuit, then G
itself is a tree through all its vertices. Therefore, G is its own
spanning tree.

Figure 2

Now, if G has one or more circuits then choose any circuit and
delete an edge from the circuit. In the chosen circuit there is atleast
one more path that connects the end vertices of the deleted edge.
Therefore the deletion of the edge will still leave the graph connected.

If there are more circuits after the deletion then again choose
any circuit from the graph and delete any one of its edge. Again the
resultant graph will remain connected.

Continue the operation of deletion repeatedly so that all the
circuits are ’broken’ and the resultant subgraph is connected and
circuit-free that contains all the vertices of G.

Hence, at the end of the above prodecure we always obtain a
spnning tree.

Thus, every connected graph has atleast one spanning tree.

3.10. Example. Describe a method to find all spanning tree of a
graph.

Solution : Let G be a connected graph. If G is a tree
then G itself is one and only one spanning tree of G.
Now, as shown in the figure 3, consider a connected graph G. It is
not a tree because it has atleat one circuit. Let T1 be a spanning tree
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of G that consists of the branches a, b, c, d.

Figure 3. Finding a spanning tree

Add a chord, say h, to the tree which will form a fundamental
circuit through b, c, h, d. Removal of the branch c of T1 from the
fundamental circuit b, c, h, d will break the circuit and create another
spanning tree, say T2.

Instead of deleting c, we can delete d or b and obtain two
more different spanning trees namely a, b, c, h and a, c, h, d. This
process generates all possible trees corresponding to the chord h and
associated fundamental circuit.

We restart with the initial tree T1 and repeat the process, that
we followed with the chord h, using another chord e or f or g and
obtain all possible different spanning trees corresponding to each
chord addition to T1.

Thus, we can obtain all possible spanning trees of a connected
graph.

3.11. Definition. Cut-Set

In a connected graph G, a set of edges whose removal from

Figure 4. Cut Set

the graph leaves the graph disconnected, provided removal of no
proper subsets of these edges disconnets G. is called a cut-set of the
graph.
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In the graph in Figure : 4 the set of edges {a, c, d, f} is a cut set of
the graph.

3.12. THEOREM. Prove that every cut-set in a connected graph
G must contain at least one branch of every spanning tree.

Proof : Let G be a connected graph and S be a cut-
set of G.
If possible, suppose T is spannig tree of G which has no edge in-
cluded in the cut-set S. Therefore T is completely contained in G−S.

As T is a spanning tree and spans through all the vertices of
G, the sub-graph G− S remains connected.
But, that is not possible as removal of a cut-set must leave the graph
disconnected.

Therefore, our supposion is wrong. Hence, every cut-set in a
connected graph G must contain at least one branch of every
spanning tree.

3.13. THEOREM. Prove that in a connected graph G any
minimal set of edges containing at least one branch of every spanning
tree of G is a cut-set.

Proof : Let G be a connected graph and Q be a minimal
set of edges containing atleast one branch of every spanning tree of G.

Now, G − Q is a subgraph of G from which atleast one branch
of every spanning tree is missing.

As G − Q cannot contain any spanning tree of G completely,
it must be disconnected.

Since, Q is a minimal set of edges with this property, any edge
e returned from G to G−Q will create atleast one spanning tree.
Therefore, G−Q+ e will be a connected graph.

Thus, Q is a minimal set of edges whose removal from G dis-
connects G.

Hence, Q is a cut-set of G.

3.14. THEOREM. Prove that every circuit has an even number
of edges in common with any cut-set.

Proof : Consider a cut-set S in a connected graph G
.
Let the removal of S partition the vertices of G into two disjoint
subsets V1 and V2.
Let τ be a circuit in G. If all the vertices of τ lie entirely within one
of the vertex sets V1 or V2, then all the edges of τ are different from
those of S. Therefore in that case the number of edges common to S
and τ is zero; that is,

N(S ∩ τ) = 0
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, an even number.
Now, if some vertices in τ are in V1 and some
are in V2, we need to traverse back and forth be-
tween the sets V1 and V2 as we traverse the circuit.

Figure 5. Circuit (thick lines) and a cut-set in a graph G

Because of the closed nature of a circuit, the number of edges
we traverse between V1 and V2 must be even.

Also every edge in S has one end in V1 and the other in V2,
and no other edge in G has this property of separating sets V1 and
V2, the number of edges common to S and τ is even.

Thus, in any case every circuit has an even number of edges in
common with any cut-set.

3.15. Definition. Fundamental cut-set

Let T be a spanning tree of a connected graph G. Then a
cutset formed by exacyly one branch, say b, of T and possibly some
more chords of T is called a Fundamental cut-set of G relative to the
spanning tree T .
In the figure : 6 {d, e, f} is a fundamental cut-set with d as one of

Figure 6. Fundamental Cut-Set

the branch of a tree (thick lines) and remaining edges d and f as
chords of the corresponding tree.

3.16. THEOREM. Prove that the ring sum of any two cut-sets
is either a cut-set or an edge disjoint union of cut-sets.
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Proof : Let G be a connected graph with vertex set
V .
Suppose S1 and S2 are two cut-sets in G.

(a) Partition by S1 (b) Partition by S2

Figure 7. Cutset partitions

If V1 and V2 form the unique and disjoint partitioning of V
corresponding to S1 (Figure 7a) and V3 and V4 is the unique and
disjoint partitioning of V corresponding to S2 ( figure 7b) then clearly,

V1 ∪ V2 = V and V1 ∩ V2 = ∅
V3 ∪ V4 = V and V3 ∩ V4 = ∅

Now let
V5 = (V1 ∩ V4) ∪ (V2 ∩ V3)

and
V6 = (V1 ∩ V3) ∪ (V2 ∩ V4)

From the Figure 8 it can be seen that

V5 = V1 ⊕ V 3 and V 6 = V2 ⊕ V 3

Figure 8. Partition by S1 ⊕ S2
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We note that the end vertices of the edges common in S1 and
S2 lie entirely either in V5 or in V6 but not in both. Therefore the
ring sum of cut sets S1 ⊕ S2 consists only of those edges that join
vertices in V5 to those in V6.

Moreover, there are no edges outside S1 ⊕ S2 which join ver-
tices in V5 with vertices of V6.

Thus, the ringsum S1 ⊕ S2 produces a partitioning of V into
V5 and V6 such that

V5 ∪ V6 = V and V5 ∩ V6 = ∅
Hence, S1 ⊕ S2 is a cut-set if the subgraphs containing V5 and V6
each remain connected after S1 ⊕ S2 is removed from G.

Otherwise, S1 ⊕ S2 is an edge disjoint union of cut-sets.

3.17. THEOREM. Prove that with respect to a given spanning
tree T , a chord ci that determines fundamental circuit τ , occurs in
every fundamental cut-sets associated with the branches in τ and in
no other cut-sets.

Proof : Consider a spanning tree T in a given con-
nected graph G.
Let ci be a chord with respect to T , and let the fundamental circuit
determined by ci be

Γ = {ci, b1, b2, . . . , bk}
, which consists of k branches and the chord ci.

Every branch of any spanning tree has a fundamental cut-set
associated with it.
Let S1 = {b1, c1, c2, . . . , cq} be the fundamental cut-set associated
with b1, consisting of q chords and the branch b1

Now the edge b1 is in Γ and S1 both.
As there must be an even number of edges common in a cut-set
and a circuit, there must be atleat one more edge common in Γ and S1.

But among the remaining edges in Γ and S1 only a chord can
be common in both.

Therefore, the chord ci is one of the chords c1, c2, . . . , cq.

Therefore, ci is contained in the fundamental cut-set S1 corre-
sponding to the branch b1 of Γ.

Exactly the same argument holds for fundamental cut-sets as-
sociated with b2, b3, . . . . . . bk. Therefore, the chord ci is contained in
every fundamental cut-set associated with branches in Γ.

Moreover, if the chord ci is in any other fundamental cut-set
S ′ in T , besides those associated with b2, b3, . . . . . . bk then there
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would be only one edge ci common to S ′ and Γ, since none of the
branches in Γ are in S ′, .

But that is impossible as there must be an even number of
edges common in a circuit and a cut-set.

Therefore ci is contained only in the fundamental cut-sets cor-
responding to the branches of the fundamental circuit determined by
ci.

3.18. THEOREM. Prove that with respect to given spanning tree
T , a branch bi that determines fundamental cut-set S, is contained
in every fundamental circuit associated with the chord in cut-set S
and no other.

Proof : Consider a spanning tree T in a given con-
nected graph G.
Let bi be a branch with respect to T , and let the fundamental cut-set
determined by bi be

S = {bi, c1, c2, . . . , cp}
, which consists of p chaords and the branch bi.

Every chord of any spanning tree has a fundamental circuit as-
sociated with it.
Let Γ1 = {c1, b1, b2, . . . , bq} be the fundamental circuit associated
with c1, consisting of q branches and the chord c1

Now the edge c1 is in Γ1 and S both.
As there must be an even number of edges common in a cut-set
and a circuit, there must be atleat one more edge common in Γ1 and S.

But among the remaining edges in Γ1 and S only a branch
can be common in both.

Therefore, the branch bi is one of the branches b1, b2, . . . , bq.

Therefore, bi is contained in the fundamental circuit Γ1 corre-
sponding to the chord c1 of S.

Exactly the same argument holds for fundamental circuits as-
sociated with c2, c3, . . . . . . cp. Therefore, the branch bi is contained in
every fundamental circuit associated with chords in S.

Moreover, if the branch bi is in any fundamental circuit Γ′ in
T , besides those associated with c2, c3, . . . . . . cp then there would be
only one edge bi common to Γ′ and S, since none of the chords in S
are in Γ′, .

But that is impossible as there must be an even number of
edges common in a circuit and a cut-set.
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Therefore bi is contained only in the fundamental circuits cor-
responding to the chords of the fundamental cut-set determined by
bi.

3.19. Definition. Edge Connectivity

The Edge Connectivity of a connected graph G is the number
of edges in the smallest cut-set of G.
The edge connectivity of the graph in the figure 6 is 2.

3.20. Definition. Vertex Connectivity

The Vertex Connectivity of a connected graph G is the small-
est number of vertices whose removal from the graph leaves the graph
G disconnected.

3.21. Definition. Separable graph

A connected graph G is said to be Seperable if its vertex con-
ncetivity is 1.

Figure 9

The graph in the figure 9 is a seperable graph as its vertex connec-
tivity is 1.

3.22. Definition. Cut-Vertex

In a seperable graph a vertex whose removal from the graph
leaves the graph disconnected is called a Cut-Vertex of the graph.
The vertex V in of the graph in the figure 9 is a cut-vertex.

3.23. THEOREM. Prove that a vertex v in a connected graph
G is a cut-vertex iff there exist two vertices x and y in G such that
every path between x and y passes through v.

Proof : Let G be seperable graph with a cut-vertex
v.
Removal of v from G results in a disconnected graph G− v.
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Figure 10
Suppose G consists of K components, say G1, G2, . . . , Gk.
Choose some x, y ∈ G − v such that x ∈ Gi and y ∈ Gj for some
i 6= j.
There is no path between x and y as they belong to distinct compo-
nents.
Since G− v is a subgraph of G, we have x, y ∈ G.
As G is a connected graph there must be atleast one path between x
and y in G.
As no path between x and y exist after removal of v form G, each
path that connects x and y in G must be passing through v.

Conversely, suppose there are two vertices x and y in G such
that every path joining them passes through a vertex v.
Let P1, P2, . . . , Pn be all possible paths connecting x and y.
As each path passes through v, on removing v from G there does not
exist any path in G− v that joins x and y.
Therefore G− v is a disconnected graph.
As removal of v alone leaves G disconnected, v is a cut vertex of G.

3.24. THEOREM. Prove that the edge connectivity of a graph
G can not exceed the degree of a vertex with the smallest degree in G.

Proof : Let G be a connected graph and v be a ver-
tex of G with smallest degree.

Suppose d(v) = k
Therefore at the most k edges, that are incident with v, are required
to be removed from G to isolate the vertex v.
Thus, removal of those k edges will leave the graph disconnected.
As the edge connectivity of a graph is the minimum number of edges
required to removed from a graph to disconnect it, it follows that

Edge connectivity of G 6 k
Thus, the edge connectivity of a graph can not exceed the degree of
a vertex with the smallest degree in the graph.

3.25. THEOREM. Prove that the vertex connectivity of any
graph G can never exceed the edge connectivity of G.

Proof : Let G be a connected graph and the edge
connectivity of G be α.
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Therefore there exists a cut-set S of G containing α edges of G.
Suppose S partions the set of vertices of G into disjoint subsets V1
and V2

Figure 11
Therefore at the most α end-points of the edges in S lie in each of V1
and V2.
Thus, by removing at the most α vertices, that are incident with
the edges in S, all the edges in S will be removed from G leaving it
disconnected.
As the vertex connectivity of a connected graph is the smallest
number of the vertices whose removal disconnects the graph, we
have,

vertex connectivity of G 6 α
Hence the theorem.

3.26. THEOREM. Prove that the maximum vertex connectivity
one can achieve with a graph G of n vertices and e edges (e > n− 1)

is the integral part of the number
2e

n
.

Proof : Every edge in the graph G contributes two
degrees to the total degrees of all n vertices.
As e edges contribute total 2e degrees, there are in all 2e degrees
divided among n vertices.

The least integer not exceeding the average of degree of vertices
2e

n

is

[
2e

n

]
Therefore, there must be at least one vertex in G whose degree is less

than or equal to

[
2e

n

]
.

We know that the vertex connectivity of a graph does not ex-
ceed degree of any vertex in a connected graph.

Therefore the vertex connectivity of G does not exceed

[
2e

n

]
.

3.27. Definition. Define k-connected graph

A connected graph G is called a k-connected graph if the ver-
tex connectivity of G is k.
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3.28. Example. Describe network flows

Network Flows
In real life many times it is very important to know the maximum
rate of flow that is possible from one station to another station in
certain networks like telephone lines, highways, railroads, pipelines
carring gas or oil or water. In such networks the flow depends on the
individual capacity of the lines joining stations, like roads, pipelines
etc. Such networks are represented by weighted connected graphs in
which the vertices are stations and the edges are lines. The weight, a
real positive number, associated with edge represents the capacity of
the line , that is , the maximim amount of flow possible per unit of
time.

Through graphical study of such networks we try to find an-
swer of questions like

Figure 12
(i) What is the maximum flow possible through the network
between a specified pair of vertices and
(ii) how to achieve this flow?
Thus, graph theory helps us solve network flow problems.


